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Abstract 

A series of tensile strength tests were performed 

on a wide variety of sponsor supplied materials.  A 

complete description of each material is given, and 

results are presented for unnotched and notched tensile 

strengths.  The data are analyzed using Weibull, normal, 

and log normal statistics.  The press-molded materials 

exhibit more scatter than the continuous or quasi- 

continuous processes.  A system for estimating conservative 

design parameters is developed, and the results are applied 

to the unnotched tensile strength.  Data are presented for 

tensile strength in the presence of a slit notch, and a method 

is given to calculate notched strength over a variety of 

notch sizes.  Since the slit notch geometry gives the most 

strenuous stress concentration, the results may be used 

to give conservative estimates for other geometries.  The 

use of "stress oriented" notched strength predictions is 

shown to be superior to that of classical Linear Elastic 

Fracture Mechanics (LEFM) .    
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Introduction 

The use of composite materials in load-bearing 

applications demands the use of reliability and statistical 

considerations.  For metals design, this is covered by 

handbook "safety factors."  Due to the variability of 

composite constituents and processing, suitable methods 

must be developed to calculate reliability.  In addition, 

we must have assurance that the results are conservative 

so as to produce a reliable design.  This report presents 

tensile strength data for a variety of composite material 

systems, and addresses the methods of analysis necessary 

for design. 

Notches are important to consider in structural 

design, since they can be induced intentionally as 

cut-outs, or unintentionally as fabrication errors. 

There is a "notch size effect" in composites which demands 

improved methods of analysis over the classical "stress 

concentration factor" and "critical stress intensity 

factor" approaches.  This report presents data for 

3 notch sizes, and describes a method for predicting 

strength at other notch sizes. 

IV 



1.  Material Descriptions and Test Geometry 

The following gives a description of the 

materials used in the 1979-80 Materials Characterization 

Program.  The reinforcements include glass, graphite, 

and hybrid combinations; the molding processes include 

compression, injection, and pultrusion.  Results are 

tabulated in section 2, and design and statistical 

considerations are discussed in section 3. 

The materials were submitted in sheet form to the 

University of Delaware, and straight-sided tensile specimens 

were cut from sheet using a water-cooled surface grinder 

equipped with a diamond-impregnated cutting wheel.  Bevelled 

end tabs of woven fiberglass were adhesively bonded to 

the specimen after the specimen surface was sanded.  In 

addition, Material "F" was machined into a dogbone 

(see Figure 2) due to persistent failure in the grips. 

Material "D" was tested in flexure since no adequate 

adhesive could be found for this high tensile strength. 

The asterisk (*) found on the material descriptions 

on the following pages denotes a registered trademark. 



Material "A" 

Supplied by ICI Americas 

Material Description: 

ITP-1054 Vinyl ester 

25 w% XPL-1041 vinyl ester (half resin, half styrene) 

50 w% OCF#433 glass (chopped), 1" length 

25 w% camel-white CaCCU 

Compression molded at: 

280°F 

400 psi 

2 minutes 

charge 10" x 10" , final dimensions 12" x 12" 

Specimen Geometry: 

See figure 1; average thickness is 0.135". 



Material "B" 

Supplied by General Motors 

Material Description: 

SMC-R50 Vinyl ester 

50 w% Dow Derakane 7 90 paste "f" 

50 w% OCF 433AA-114 yield, 1" chopped glass 

tpaste consists of (parts by weight) 

100 resin 

1 T-butyl perbenzoate 

100 camel white CaCO, 

2 Zinc stearate (mold release) 

7 MgO slurry 

Compression molded at: 

300°F 

600 psi 

3 minutes 

charge 18 3/4" x 12 1/2", final dimensions 21" x 24" 

Specimen Geometry: 

See figure 1; average thickness 0.142".  Tensile 

direction is the 24" direction of the original panel. 



Material "C" 

Supplied by PPG Industries 

Material Description: 

XMC* - 3 

weight percentages: Continuous glass 50.4 w% 
PPG 1064-kl5XMC strand 

Chopped glass 21.6 w% 
PPG 1064-kl5XMC strand 

Resin 28.0 w% PPG Selectron 50335 
(semi-rigid) 

molding conditions: 300°F, 500 psi, 3 minutes 

charging and final dimensions:  charge 8 1/8" x 16" 

(centered), final dimensions 9" x 16" (continuous 

glass in 16" direction). 

Specimen Geometry: 

See figure 1; average thickness is 0.109".  Tensile 

direction is in the continuous glass direction. 



Material "D" 

Supplied by General Electric 

Material Description; 

Pultruded glass/epoxy (No Commercial Designation) 

79 w% glass, PPG 713 NT-16 Roving 

21 w% Arnox* 3220 epoxy 

Molding conditions: 

die length 4 0" 

die temperature 150°C 

Resin bath temperature 60°C 

Pultrusion rate 6"/min. 

Post cure for 4 hours at 190°C 

Specimen Geometry; 

Straight-sided 1/2" wide x 3" long x 0.120" thick 

specimen for flexure data scatter test; 2" span for 3 point 

flexure.  The length direction of the beam was in the 

pultrusion direction.  No end tabs were used. 



Material "E" 

Supplied by International Harvester 

Material Description: 

SMC C45R20 

35 w% Dow Derakane 790 vinyl ester 

45 w% aligned, continuous glass OCF #433 

20 w% random chopped glass OCF #433 (Length 

Approximately 1") 

ply sequence R/C, C/R, R/C, C/R where 

R = random, C = continuous 

Molding conditions: 

300°F 

1,000 psi 

3 minutes 

charge 11 1/2" x 17 1/2", final dimension 12" x 18" 

continuous glass in 18" direction 

Specimen Geometry: 

See figure 1; average thickness 0.096".  Tensile 

direction is in the 18" direction of the original panel. 



Material "F" 

Supplied by E. I. Du Pont Co. 

Material Description; 
* 

Rynite 545 

45 w% chopped glass, 3/16" initial length 

55 w% polyethylene terepthalate resin 

molding conditions:  Melt temperature 575°F(300°C) 

Injection Pressure 8,000 psi 

Mold fill time 1.2 sec 

Mold temperature 100°C 

Cycle time 46 sec 

Dogbone specimens cut from 4" x 10" plaque per Figure 2. 

Gating:  Plaque was center end gated, with essentially 

a point gate (very slight fan) 

Specimen Geometry: 

For tensile data scatter, see figure 2.  For 

notch sensitivity, see figure 1 except 10" total length. 

Specimen thickness 0.125".  Tensile direction was in the 

mold-fill (10") direction. 



Material "G" 

Supplied by Graftek 

Material Description; 

Graftek molding compound Commercial Designation GT-50N 

49 w% Zytel 101, Nylon 6-6 

51 w% chopped graphite Manufacturer and 

Length unknown 

Molding conditions: 

machine - Aurburg 221/221P 25 mm reciprocating screw 

Unknown Injection Conditions 

(temperature, pressure, mold-fill and cycle times) 

Gating:  end gated 

Specimen Geometry: 

See figure 3; average thickness 0.130".  No notched 

strength tests were made due to insufficient width.  Mold 

flashing was removed by a very light sanding. 



Material "I" 

Supplied by Ford Motor 

Material Description; 

R-65 Vinyl ester 

67 w% OCF #411 roving, chopped 1" length 

33 w% Dow Derakane 790 vinyl ester paste+ 

tpaste composed of: (parts by weight) 

100 Dow 790 resin 

1 TBPB 

20 snowflake CaCCu 

4 zinc stearate 

2 Maglite D slurry 

Molding conditions: 

300°F 

600 psi 

3 minutes 

Charge Size 12" x 24"; final dimensions 14" x 26" 

Specimen Geometry: 

See figure 1; average thickness 0.142".  Tensile 

direction is the 26" direction of the original panels. 
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Material "J" 

Supplied by Celanese 

Material Description: 

Graphite/Glass hybrid (No Commercial Designation) 

Unidirectional graphite faces, Celion 6000 fiber in 

PPG 50335 polyester resin, nominal 0.011" thick 

each face, Nominal 40 w% resin, 60 w% fiber 

HMC Core; 35 w% PPG 50335 polyester resin, 65 w% 

PPG type 518 Roving, 1" chopped; Semi Rigid 

(standard) Formula, Nominal 0.078" thick 

OVERALL ANALYSIS (EXPERIMENTALLY Determined): 

wt of faces 
total wt = 0.20 

wt of graphite fiber _ Q ,„ 
total wt 

MOLDING CONDITIONS: 

305°F, 700 psi, for 3 min; "bumped" 3 times 

to release styrene to avoid surface bubbles 

charge approximate 80-85% for HMC core 

final dimensions 12" x 12" 

Specimen Geometry: 

See figure 1; average thickness 0.100".  Tensile 

direction is in the 0° graphite fiber direction. 
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Material "L" 

Supplied by Hercules 

Material Description; 

Graphite/Glass Hybrid (unknown commercial designation) 

Unidirectional graphite, Hercules AS 4P beamed fiber in 

OCF E987 polyester resin 

Core:  C20R4 5, 6 5 w% OCF#433 AE113 Roving; (20 wl 

continuous, 45 w% , 1" chopped glass) 35 w% OCF E987 

polyester resin; C/R, R/C lay-up; 

OVERALL ANALYSIS: 

wt glass fiber   n   cr.,  ——r—T T  = U.oUl total wt 

wt carbon fiber _ n ,.,., 
total wt      U.IJJ 

wt resin   _ 0,c 
total wt 

wt carbon fiber  _ Q 383 
wt graphite skin layers 

Processing: 

SMC made to nominal 65 % fiber loading with slightly 

resin-rich carbon fiber plies (due to difference in wet-out 

characteristics) on conventional SMC - C/R machine. Molded in 

12" by 18" matched metal mold 3 min. at 1000 psi and 300°F. 

Continuous carbon fiber skins were placed over a balanced, 
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symmetric core of C2 0R4 5 (20 wt% continuous, 4 5 wt% 1" 

random chopped glass) glass core with all continuous 

reinforcement aligned in a parallel fashion (the 

innermost reinforcement is chopped glass). 

Specimen Geometry; 

See figure 1; average thickness 0.101".  Tensile 

direction is the continuous fiber direction. 
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2.  Summary of Test Results 

The tensile strength results are shown in 

Table 1.  The strengths have been analyzed by 

fitting the data to three statistical models: 

Weibull, Normal, and Log-Normal.  The meaning of the 

inferred statistical results is explained in Section III 

(Data Analysis).  All specimens were tested in tension, 

25 replicates, except material "D," which was tested in 

flexure. 

The notched strength results are presented in 

Table 2.  The specimens have an ultrasonically 

machined, very thin, center notch.  Each notch size for 

each material has 5 replicates.  Specimens of material 

"G" were too narrow to permit notched strength tests. 

Material D showed extensive axial splitting and end tab 

debonding, due to its high ultimate strength. 



17 

ja 

EH 

10 in 

ü ^s. «5 "tf o r~ o in ■q" 00 r» vo 
•H M ■5T in CN CM IC rH in CM o ■rj" 
■P U   01 m n CM rH rH CM o <-\ n <* 
CD ola o o O O o o o o o O 

•H jS. 
■P w   »- o o O O o o o o o O 

(0 
■P 

■H 

<B 
s 
n ,-^ 
0 H in i-t CM rH in cn o rH ■«r IC 

a U co ola PO ■q- 0"! CM o <N in in r- 00 

o hlN »* ** "3" in in ■* ^ T <» «tf 
H X    -' 
en 
0 
hH 

"O c 
CO H 0~ 
0 (0  -rl -H CM CO oo 

-H 13 -P  C0 • 
■P a A a o o CM rH rH 00 ■w CO o kO 

CO (0 -H «-' (N 03 CM 00 o t£> 01 ** CM «5 
-rH -p > w r~ o CM r- rH O-i o 01 Cl CM 

+J W   dl rH CM ** "» *» ro r» 
<8 Q 

4-1 

rH O ^ CM ro 
(0 tJ>-H O o o O o o o o O o 

nj 01 00 o o o o rH o CO o in 

H u a ■*r T ID oo in n vo CM kD 00 

0 CD — 
2 >, CM in r*> n< H a\ H CM in CM 

<lx (N CM oo to H H n CO m t»- 

w 

-H r-l 

L
o
ca

ti
o
n

 
P

ar
am

et
er

 
3 

  
(p

si
) 

CM <r> ^ 
0 o O o O O o o O o o 

■H o o o o O O o o o o 
■P (N •Si- in o O 00 00 r» ■n CO 

CO 
■H co va in r~ m cr> rH CM o in 

-P CM CM 00 to H <-t n m in r~ 
18 rH rH 

4J 
Cfl 

S-l 

H <D 
H <U -P ■a1 

3 a tu «> cn U3 H to Öl CM 01 oo <y\ 

X! nj g a 
•H A (8 IX) CM rH H » r~ in in ■» o 
tU W  M rH rH CM "31 CM rH CM CO H rH 

s 18 
CM ^-^ u) <D 

0) ■p -P 
■p ■H ■rt 
•H J= J3 
Ä a a 
a 18 18 
(8 u u 

r-t M Cn Di 
<U 01 \ \ 
Ü4 ^ CO 01 

>\ "0 •O CO 01 
EH 

tJ 
tu tu 

"0 
(8 
H 

(8 
rH 

H <D rH rH Dl Di 
(8 •0 « 0 0 

-H 3 \ s s "0 ■a 
u « « M CJ « •H ■H 

<u 1 1 * ■p 1 • • l M U 
■p U O o r-f u ■n -r-! O XI XI 
(8 s s a 3 s C G s >i >. 
s cn CO X P-i CD M H tn X « 

H 
(8 

•H 

(H 
0) < 0] u Q ta En CJ H r3 ►4 

■p 
(8 
S 

o 
•H 
>i 

01 
OJ 
c 
o 
XI 
Di 
0 

Cfi «: 
■o 
0) 

■0 
rH 
o 
E 
I 
0) < 

3 
D1 

18 
H a 
+j 
18 

T) = 
0) o 

■P rH 

0 
C ^ X ^ 
tu CM z CM 
03 • TJ" • 

•H n 
£ 

CO 

H C 0 C 
(I) ü u 0 
X! •H 4H -H 
+J -P -P 
0 ü •o   • 0 

tu <UX! 0) 
01 01 C +J 01 
01 •H   Dl 
tu CU X! C tu 

rH tu u tu tu 
G 01 (8    rl CO 
3 ^-' g-p 

CO 

^"* 
■P tu CO tu 
C M a tu rl 
tu 3 (U rH 3 
B X E-H X 
tu 0) ■H   01 tu 
0 rH 0   C rH 

H M-t tu CU <H 
0 a-p 

■4-t U 01 k 
c n -H o 

•H m U   01 MH 
tu o a 
rl C0 UH 01 

■p o -P 
0) ■H tu o H 
01 3 30 3 
18 CO rH    » to 

rH tu (8 CO tu 
U K > CM « 



18 

Table 2 

Notched Tensile Strength 

Material 

Nominal 
Strength 

Crack-length (in)    aN 

"True" 1 
Strength 

CTN 

Critical Stress 2 

Intensity Factor 
kl"c 

2c psi psi psi/In 

A 0.126 
0.250 
0.375 

21,800 
16,700 
14,900 

21,900 
16,900 
15,300 

9,730 
10,600 
11,700 

B 0.125 
0.253 
0.375 

24,100 
19,600 
16,800 

24,200 
19,800 
17,500 

10,700 
12,500 
13,400 

C 0.127 
0.250 
0.375 

65,600 
52,500 
48,900 

65,800 
53,100 
50,200 

29,400 
33,300 
38,500 

E 0.125 
0.250 
0.375 

97,500 
87,600 
75,600 

97,800 
88,600 
77,600 

43,300 
55,500 
59,900 

F 0.125 
0.250 
0.375 

13,100 
10,400 
8,530 

13,200 
10,500 
8,760 

5,820 
6,590 
6,720 

I 0.125 
0.256 
0.375 

26,300 
22,300 
18,800 

26,400 
22,600 
19,300 

11,700 
14,300 
14,800 

J 0.125 
0.250 
0.375 

56,500 
45,600 
38,800 

56,700 
46,100 
39,800 

25,100 
28,900 
30,600 

L 0.125 
0.250 
0.375 

68,200 
53,000 
49,000 

68,4.00 
53,600 
50,300 

30,300 
33,600 
38,600 

1. aN = (FWC)aN aN = avg. measured failure stress 

FWC = Finite Width Correction factor 

1/2 
Ü- tan I£ 
TTC       W 

[Paris & Sih] 

where W = width at specimen = 1.50 in. 
c = crack half-length 

the argument is in radians 

2. k_ = critical stress intensity factor °N ^ 
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3.   DATA ANALYSIS 

3.1  Inference of Weibull Parameters and Design Considerations 

• Characteristics of the Weibull Distribution 

The generally used form for a cumulative 

distribution function (or simply "distribution function") 

F is: 

F(a) = P(as < a) (1) 

(2) 

where a  is a random variable*, P denotes probability, 

and a  is the particular value of interest.  For a set of 

data which obeys a Weibull distribution, the distribution 

function is: 

F(a) = 1 - exp[-a/ß)a]  a > 0 

where exp is exponential function 

ß is the scale or location parameter 

a is the shape parameter 

Mathematicians often use the equivalent notation 

d W(ß,a) (3) 

to show that a obeys a Weibull distribution. If as is 

the tensile strength and a is the applied stress, then 

F(a) represents the probability of failure. 

We are often interested in the reliability, i.e. 

the probability that the random variable (outcome of an 

experiment) exceeds the particular value of interest. 

A "random variable" is simply the outcome of an experiment. 
For example, the value shown on a fair die after a die toss 
is a random variable. 
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This reliability is expressed as 

R(a) = P(as _> a) (4) 

or 

R(a) = 1 - F(a) 

and, for a Weibull distribution, is given by: 

R(a) = exp[-(a/3)a] o  >  0 (5) 

If a  is the tensile strength and a is the applied 

stress, then R(a) represents the probability of survival, 

The mean or average of the population can be 

expressed in terms of a,$ as 

ö = ßr(l + 1/a) (6) 

where V   is the Gamma function, a table took-up.  For 

a ■> 1, which is the normal case for strength results, 

0.88 6 <_ T  <_  1, so that ö _< 8.  The average is slightly 

less than the scale parameter due to the skewness of 

the distribution.  The standard deviation for a 

Weibull distribution is: 

Std.   Dev.   S  =   3[r(L +  2/a)   -  r2(l  +  l/a)]1/2 

(7) 
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Statistical Inference of Weibull Parameters 

Given a set of sample data from an experiment, 

we would like to predict estimates a and ß for the entire 

(infinite) population.  One way to do this is by- 

solution of the maximum likelihood equations; this 

requires use of a computer or programmable calculator. 

The second method is by the use of logarithms; this 

method should be used only if a digital computer or 

programmable calculator is not available. 

Maximum Likelihood Method 

This method has a sound theoretical basis and allows 

interval estimates to be made for the statistics a,ß.  It 

demands solution of a very non-linear equation, but is 

routine with a computer or programmable calculator. 

The maximum likelihood estimator 9n for a set of 

n random variables X • is given by the solution of: 

Define Likelihood 

L(9) = f(xi;e)f(x2;9) ... f(xn;9) 

and for Weibull Distribution, 

(8) 

MAX L(9) = 

n 
xi" 

ß 
1="! 

a 
-   "B" 

a-l   r- 

exp 
rx ■ a—i 

ß (9) 

where f is the p.d.f. of X, and 9 is the true population 

parameter, and L(9) reaches a maximum at 9 [Mann, Schäfer, 
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and Singpurwalla]. The maximization equation (9) 

acts to maximize the likelihood of "legitimizing" 

the outcome of a given experiment [Mendenhall and 

Schaeffer]. 

The maximum likelihood equations for 

a,8 are given by: 

?* n 

k(ct) = 0 = 

V A n 

I  Ka
L  lnX.       I  M. 

- i=l     1  1   i=l  1 (10) 

r  et     a     n 

i=l x 

8 = 

1/a 

n . L, x 

n 
1 

i-1 
(11) 

J 

The a,8 are point estimates to the true population 

parameters a,8 [Mann, et al.].  In practice, 

equation (10) is solved for a and the result used in 

(11) to get 8.  For small sample sizes (n < 30), the 

estimates a,8 from equations (10, (11) are biased. 

Fortunately, there are correction factors available 

which depend only on n, the number of data points 

[Thoman, Bain, and Antle].  These correction factors 

B(n), shown below, thus provide unbiasing so that 

E[B(n)a] = a (12) 
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Table 3 

Unbiasing Factors B(n) for MLE of a 

5     6     7 8    9    10   11   12    13    14    IS   16 

B(n)  .669  .752  .792   .820  .842  .859 .872 .883 .893  .901  .908 .911 

„    is    20    22     24    26    28   30   32   34    36    38   40 

0(n)  .923  .931  .938   .943  .947  .951 .955 .958 .960  .962  .964 .966 

n    42    44    46 48    50    52   54   56   58    60    62   64 

B(n)  .968  .970  .971   .972  .973  .974 .975 .976 .977  .578  .979 .980 

n    66    68    70    72    74    76   78   80   85    90    100  120 

B(n)  .980  .931  .981   .982  .982  .983 .983 .984 .985  .986  .987 .990 

One thus solves equation (10) for a, unbiases the 

estimate by multiplying it by B(n) from Table 3, and then 

solves for ß. 

Logarithm Method 

The data are ranked from lowest to highest, and 

a ranking statistic is used.  The rank can be simple, 

mean, median, hazard, or Hazen; but there is a preference 

for the median rank.*  This median rank is applied to 

the ranked data as 

P. from tables 

or 

P. ~ J " 0-3 (13) 
j       n + 0.4 

* 
Simple Rank P. = j/n 

Mean Rank P. = j/n+1 

Hazen Rank P. = 3~0,5 

1 n 
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which gives a series of j ranks of the n total data points. 

This rank statistic is used as an approximation to the 

distribution function F.  It is helpful to draw a 

graph of data value (abcissa) versus rank (ordinate). 

We proceed to manipulate the formula (2) into a 

convenient linear form.  Since P(a  < a) = F(a), 

1 - F = exp[-(a/ß)a] (14) 

Taking natural logarithms, 

£n(l - F) = -(a/ß)a (15) 

Clearing the minus sign and again taking natural 

logarithms, 

An(-£n(l - F) = aAn(a/ß) (16a) 

or 

Ana = | £n[-An(l - F)] + Anß (16b) 

The equation (16b) is in linear form for a least squares 

analysis of data points Ana versus An[-Ah(1-Rank)].  The 

slope is 1/a, and Anß can be easily calculated.  "Weibull 

function" probability paper exists which has the transformation 

(16b) implicit in its scale. 

Note that the form (16b) is also usable to calculate 

an allowable a for a given structural reliability R = 1 - F, 

once the c; and ß are known. 
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Problems with logarithm method:  The a,3 found 

by linear regression on (16b) are "point estimates." 

To obtain meaningful interval estimates of say a 

requires us to assume that the least squares statistics 

1/a and Una  are normally distributed.  This assumption 

seems doubtful at best.  The logarithm method also has 

difficulty handling censored data points, which can 

occur in fatigue experiments (as run-out, etc.). 

Design Considerations of Weibull Statistics 

The estimates a, 8 of the population parameters 

a, 8 shown in Table 1 are derived by using data and 

solving Maximum Likelihood equations.  These estimates, 

then, are themselves distributed; re-running the experiment 

could produce different estimates.  We would like to choose 

our estimates so that we conservatively underestimate the 

reliability.  This can be seen from figure 4.  Any time 

we predict a reliability that is lower than the actual 

reliability as determined by experiment using a ranking 

formula, we are conservative. 

We would like to use our estimates for a and ß, 

and "downgrade" them in a systematic manner so as to 

minimize our predicted reliability.  Since a designer 

would never use a failure stress greater than the average, 

consider the region X < X < 8. 
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.00 r 

0.434 

L0GRfa 

0.10 

Non-conservative 

R(x) = e-(x//3)a 

Data falling to right of line implies 
that using line is conservative 

A - Data points 

0.01 1,1      •     ■    ■ ^_I 
ß 

x, The experimental variable 

Figure   4. 
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If we choose lower bounds a  < a, ßL < ß, we minimize 

the predicted reliability for any stress less than the 

mean.  This can be expressed as 

aL 
-(x/ß )      _(x/ß)

a 

R(x;a  ,ß ) = e    L   < e U/N  = R(X;a,ß) 

(17) 

for    aT < a 

ßL < ß 

X  < ß 

See figure 5. 

Using information from [Thoman, et al.], we get 

the following relations to get one-sided 95% confidence 

limits for a and ß: 

aL = a/Zy I     = 1.381 for n = 25 

ßL = ßexp 2 

(18) 

I    = 0.3705 for n = 25 
Y 

The only conceptual difficulty in using the results of 

[Thoman et al.] is that the lower estimates aL , ßL 

are found by searching out upper estimates for the 

functions a/a and a£n(ß/ß).  The convenient aspect of 

the use of "percentage points" I     is that it is independent 

of the particular values of the estimates a,ß. 

The values for aL , ßL are shown in Table 4. 

The plots of tensile strength data, and curves for the 
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1.00 r 

0.434 

LOG 
R(x) 

0.10 

R(x) = e-(X//3)Q 

The line described by aL,/3L 

is conservative (for x</3) 

A - Data points 

0.01 ■   l ■      ■     *    *   ' 

ßL ß 
x, The experimental variable 

Figure  5. 
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estimates a,ß and the lower bound estimates a  , ß 

are shown in figures 6 through 15.  The curves using 

aT , ßT are uniformly conservative, as all data points 

fall below them.  We thus predict a lower reliability 

than we actually see. 
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Table 4 

Lower Bound (Conservative) Values 

for Weibull Parameters 

Lower Limits  for 
Material MLE point estimates 95% Confidence 

a 
(psi) 

aL ßL 
(psi) 

A 16.6 23,200 12.0 22,700 

B 12.9 26,400 9.34 25,600 

C 21.6 85,500 15.6 84,000 

D 41.1 167,000 29.8 166,000 

E 27.6 113,000 20.0 111,000 

F 17.9 19,800 13.0 19,400 

G 95.2 31,800 68.9 31,700 

I 35.9 32,700 26.0 32,400 

J 14.8 57,300 10.7 55,800 

K 10.9 75,800 7.89 73,200 
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3.2  Tensile vs. Flexural Strength 

For a homogeneous brittle material, the 

flexural strength is often higher than the tensile 

strength.  This has been explained by [Bullock] 

as a volume effect of the stresses.  The reasoning uses 

the Weibull formulation for reliability of a material 

under tensile stress: 

R(a) = exp< (a/ß0) 

v 
(19) 

where V is the volume under tension 

When the integral (19) is evaluated for a tensile volume, 

it gives: 

R(a) = exp -(cr/ßT) (20) 

where $T = ßQ(VT) 
-1/a 

and V„ = tensile volume 

When the integral (19) is evaluated for a 3 point flexural 

specimen, it gives: 

a. R(a) = exp[-(a/ßF)
u] (21) 

where 6p = 3Q 
2(a + 1) 

V; 

1/a 

and Vf is the total volume of the flexural specimen 

(assume equal tensile and compressive modulus) 
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The same volume of material V, if tested in tension 

and 3-point flexure, gives a ratio of average strengths 

as follows: 

äm   ßmr(l + 1/a) 
(22a) 

aT ßTr(l +  l/a) 

aF 3pr(l  +  l/a) 

or 

FT 1 

^F [2 (a  +  l]1/a 
(22b) 

For material "D," tested in flexure, the predicted 

average tensile strength would be 

äT = 167,000 psi [0.898] 

= 150,000 psi 

Note also that the volume effect predicted from (20) or 

(21) is relatively mild.  Doubling the volume with shape 

parameter a = 20 only decreases the average strength by 

a factor of 1.035, for example.  A cautionary note should 

be added that some experimental results have been found 

which contradict the simple relation (22) [Whitney and Knight] 
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3.3 Inference of Normal and Log Normal Parameters and 
Design Considerations 

The tensile strength data may also be analyzed 

by fitting it to a normal distribution.  The standard 

normal statistics are used to give the results found 

in Table 1, mainly: 

Average X = XXj/n (2 3) 

./^E x)2 Std. Deviation S = /  —;  (24a) n—1 

The log normal statistics shown in Table 1 are the 

result of assuming that the log of the strength may be 

normally distributed.  Thus we define a new variable 

Y = logl0 X (25) 

and operate on Y by using equations (23) and (24). This 

yields a mean XLQG and standard deviation S QG as shown 

in the summary, Table 1. 
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Design Considerations of Normal Statistics 

We would like to obtain extreme bound estimates 

so that we minimize the predicted reliability.  That is, 

we need to predict a probability of failure based on our 

estimate which always exceeds the experimental probability 

of failure determined by ranking. (See section 3.1). The 

probability of failure is 

P[a  < a] = $(z) (26) 

where a    is random variable of strength 

a is particular specified stress 

$ is the normal function, 

(z)-J, 
nH 

rZ -y2/2 „ e *   '     dy 

a-X 
z is the "standard" (reduced) variable,  S 
£ is the standard deviation 
X is the average strength 

Since $ increases with increasing z, we choose bounds 

on X and a  which maximize z.  Choose the region 

a < X 

which makes sense; a designer would never consider using 

a stress value above the average.  To maximize z, we 

take the experimental statistics X,S and find a one-sided 

95% confidence lower bound for X, and upper bound for S. 
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Using standard techniques for interval estimation 

[Hays and Winkler], a lower 95% confidence limit for the 

average is*: 

XT = X - ¥$■ (27) 
L     /n" 

where t* = "t" statistic (1.708 for this case) 

S = standard deviation 

n = number of data (25 for this case) 

The results of this calculation are in Table 5.  Similarly, 

an upper 95% confidence limit for S may be found using 
2 

the Chi-squared distribution (x ) as: 

iH=i>  (28) 
2 

x(n-l;0.95) 

where n = number of data (25 here) 
2 

Xf  -..QQC\ = Chi-squared for n-1 degrees 

of freedom, up to 95% (13.85 here) 

These results are also shown in Table 5. 

As an example of this conservatism, take 

material "A" under an applied stress of 19,000 psi. 

The results using the experimental statistics directly 

are: 

19,000-22,500 
z      1720 

P[a  <_ 19,000] = $(-2.03) = 2.1 % probability of failure 

If we use bounded estimates of the experimental statistics, 

* 
If y is the true population mean, then 

Probability [XL < y < °°] = 0.95 
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we get 

19,000-21,900 _  , Oo z ~    2270       -J-.^a 

Probability of failure 10.0% 

That is, the use of conservative bounds on our estimates 

causes us to maximize our predicted probability of 

failure. 
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Table 5 

Lower Bound Averages for Normal Statistics 

Material X S XL 
(psi) 

S 
(psi) (psi) u 

(psi) 

A 22,500 1,720 21,900 2,270 

B 25,400 2,080 24,700 2,750 

C 83,600 4,220 82,200 5,570 

D 165,000 4,780 163,000 6,310 

E 112,000 4,100 111,000 5,410 

F 19,300 968 19,000 1,280 

G 31,600 395 31,500 520 

I 32,300 949 32,000 1,250 

J 55,600 3,920 54,300 5,170 

L 72,900 7,270 70,400 9,590 
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3.4 Notch Sensitivity 

The development which follows is primarily for 

materials which fail in a "net tension" mode when 

placed under tension with a notch perpendicular to 

the applied load.(See fig. 1.) This failure mode could 

also be referred to as "self-similar crack growth," 

since the notch growth is in the same direction as the 

original notch. 

The details of this development may be found 

in [Pipes, Wetherhold and Gillespie]. Consider the 

variation of notch strength with notch length given by; 

r0 

-2 
a     =  {1   - (1 + Cm-1k-1)  j. (29) 

1/2 

where 

a„ = notched tensile strength 

aQ = unnotched tensile strength 

C = notch half-length 

k = notch sensitivity factor 

m = exponential factor, m < 1 

The use of equation (29) requires a minimum of two 

notch sizes to determine the empirical parameters m, k. 

Once these are found, equation (29) allows prediction of 

notch strength over a wide variety of notch sizes. 

The method used to calculate m and k was by minimizing 
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the squared error between the curve (29) and the data. 

Increasing m and k increases the notch sensitivity 

(faster strength reduction in the presence of a notch). 

Table 6 shows the notch sensitivity factors for 

the materials tested.  Material G was too narrow for 

notch testing; Material D showed extensive axial 

splitting and endtab debonding.  The difference in the 

notched strength values caused by the finite width 

corrections (see Table 2) are not significant, and so 

either a„ or a" could be used.  Figures 16 through 23 

show plots of the notched strength versus notch size. 



50 

Table 6 

Notched Strength Parameters 

Notch Sensitivity 

Material Crack len 
2 c (inc 

gth 
h) 

aN/a0 Parameters 
m        k 

A 0.126 
0.250 
0.375 

0.97 
0.74 
0.66 

-0.63 49.8 

B 0.125 
0.253 
0.375 

0.95 
0.77 
0.66 

-0.62 46.6 

C 0.127 
0.250 
0.375 

0.79 
0.69 
0.59 

0.11 18.1 

AXIAL SPLITTING, ENDTAB DEBONDING 
see Section 4 

0.125 0.87 
0.250 0.79 
0.375 0.68 

0.125 0.68 
0.250 0.54 
0.375 0.44 

NOT TESTED ■ - too narrow 

0.125 0.82 
0.256 0.69 
0.375 0.58 

0.125 1.02 
0.250 0.82 
0.375 0.61 

0.125 0.94 
0.250 0.73 
0.375 0.67 

0.0 

-0.03 

■0.04 

-0.69 

-0.37 

14.1 

47.4 

23.6 

50.0 

31.3 
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4.  Discussion and Conclusions 

Data and Statistics 

Data have been given for the tensile strength 

and its degree of variability for a variety of composite 

material systems.  The data fit a Weibull distribution 

well, and conservative parameters are given which allow 

reliability predictions.  The advantages of a Weibull 

distribution include: 

• Reliability can be calculated in closed form, 

without using tables 

• Results agree with intuition on "weak link" or 

brittle failure modes [Weibull]. 

The development for calculating Weibull, normal, and log 

normal statistics from data and developing conservative 

design parameters is given in detail.  The results are 

uniformly conservative for all materials tested.  (See 

Figures 6 through 15).  The theoretical relation between 

tensile and flexural strengths is also given. 

Data Variability 

The degree of tensile data scatter for most of 

the materials tested was virtually identical.  The average 

shape parameter a (reflects the data scatter) is: 
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• a = 29.5 average for all materials tested 

• a = 20.0 average for press-molded materials 

The press-molded materials have higher data scatter; 

to design to a given degree of reliability, we must 

utilize a smaller fraction of their average strength. 

The two materials (D and G) exhibiting the smallest 

scatter were a pultruded and an injection molded 

material.  These are continuous or automated processes 

in which one expects a higher degree of repeatability. 

The other injection molded material (F) probably loses 

its repeatability due to the machining process. 

The hybrid materials might be expected to 

have minimal data scatter due to the presence of 

continuous graphite reinforcement.  However, the 

degree of scatter is comparable to that of most SMC 

materials.  There are two possible explanations for 

this.  The chopped glass participates heavily in the 

fracture process, and often delaminates from the graphite 

face sheets.  The inherent variability of a chopped 

glass compound thus comes into play.  Secondly, the 

present process of producing the hybrid is as a laboratory 

batch process.  As production methods are stabilized 

into a standard process, the variability should decrease. 
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Notched Strength 

Data are presented for the notched static strength 

of the materials, and show a good fit to the model.  The 

parameters required to predict notched strength over a 

wide range of notch sizes are given.  Since the notch 

geometry is the most severe test, use of the strength 

formula for notches should give a conservative prediction 

is used for circular, slot, or elliptical holes. 

The use of the model (equation 29) gives superior 

results to those of classical "critical stress inten- 

sity   factor" approach.  If this approach, used in 

linear elastic fracture mechanics (LEFM), were valid, 

the kir value in Table 2 would be a constant independent 

of hole size for a given material.  It is emphatically 

not  constant; k  increases with increasing notch size 

for every material tested.  Models such as those in 

[Pipes, et al.] which account for the integrated effect 

of stress over a volume appear best suited to explain 

the hole size effect in composites. 

Several materials tested showed little strength change 

for small notches.  This gives an indication of the size of 

inherent flaws.  That is, if placing a 1/8" notch does not 

affect strength, the inherent flaw distribution of an 
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unnotched sample must contain flaws on the order of 1/8". 

This could be used as a quality control mechanism, since 

a large inherent flaw size indicates a potentially low 

strength material. 

Relationship between Notch Sensitivity and Tensile Data 

Variability 

It has been proposed from theoretical grounds 

that the degree of tensile strength data scatter should 

be related to the notch sensitivity for a brittle material 

[Wetherhold].  The prediction is that a material with a 

high degree of data scatter should be relatively 

insensitive to the presence of a notch.  Both properties 

rely on the size and distribution of inherent flaws. 

A high a value arises from a very narrow spread of tensile 

strength data.  This implies that the size and distribution 

of inherent flaws are also very narrowly distributed.  Due 

to the inherenf'perfection" or repeatability of a high a 

material, the addition of a flaw or notch has a dramatic 

effect on the strength. 

The results of this testing program suggest that 

this relationship is true, but the returns are fragmentary. 

The highest a material (G) was too narrow to test with 

notches.  The pultruded material (G) showed low scatter 
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(high a) in flexure, but the notch sensitivity results 

are extremely incomplete due to axial splitting and 

"brooming" of fibers.  Nonetheless, the results suggest 

an extremely rapid strength degradation in the presence 

of a small notch.  See Table 7.  These results are not 

presented in Table 2 due to their incomplete nature. 

Table 7 

Crack Length 
2c (inch) 

Vao 

0.125 0.66 

0.250 0.63 

0.375 0.53 

Number of 
Specimens 

2 

4 

2 

aQ = 150,000 psi (see Section 3.2) 

Specimen dimensions were as shown in figure 1. 

At the other end of the spectrum, examine the hybrid 

material J, which exhibits little strength degradation in 

the presence of a small (0.125") notch.  This material 

also has a fairly large data scatter (low a), which is 

consistent with prediction.  There are, however, enough 

ambivalent results that the conclusions must be considered 

tentative. (See material I, for example.) 
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